
TECH 350: DSP
Class VI: More Ways to Characterize LTI Systems



Tools for Describing Filters (So Far)
How can we describe filters? 

First, by their frequency response 


(magnitude and phase response)


Second, by how they are implemented 


(difference equations, underlying functions (Chebyshev, Butterworth, etc.), order)


Third, by contextualizing them vis-a-vis filter parameters/characteristics 


(cutoff frequency, resonance, etc.)



Example 1
System: y(n) = S(x(n)), where S: output = input * 0.5 + 0.5

where n = 0, 1, 2, 3, . . . are indices to input X and output Y

x(n) S y(n) x(n) y(n) +
0.5 

0.5 

Input: 1 0.5 0 -0.5 -1 Output: 1 0.75 0.5 0.25 0



x(n) S y(n) 

Input: 1 0 0 0 0 … Output: 1 0.5 0.25 0.125 0.0625…

The Impulse

or Kronecker delta

∂t,k, with k = 0 in this 
case


The Impulse Response (IR) (AKA h(n)) 
of the system S…

but only for an impulse at t = 0.

What about at other times?



The Impulse Response
Impulse Response (IR): the output signal of a system S when an 
impulse is applied to the system input, often written as h[n] 

What information does the IR give us?


What about for impulses at times other than k=0?  

Answer: S is LTI, so we’re all set! More specifically, we can define any input as time-shifted and scaled impulses, 
and because S is LTI, the output is equal to the sum of impulses, time-shifted and scales in an identical 
configuration (this is exceptionally important later).


Does the IR give us information about the full bandwidth of the digital system encapsulating S? 

Answer: The impulse contains all frequencies, so the IR informs us how the system responds at all frequencies.



Sound Typology (5)
•Non-periodic sounds have no pitch and tend to have continuous spectra, e.g. a short pulse 

(narrow in time, wide in frequency)

•The most complex sound is white noise (completely random) 



Finite vs. Infinite Impulse Response
Finite Impulse Response (FIR) 
A FIR filter has a fixed length IR (more explicitly, it becomes zero at some time t and stays that way!), 


A FIR filter of order N as an IR of length N+1 samples. FIR filters may have feedforward, but no 
feedback.


Pros: Can have a flat (or variable) phase response, is more stable than IIR


Cons: is more computationally expensive


Example: 

y(n) = 1/2(x(n) + x(n-1)) h(n) (as vector) = [0.5 0.5]



Finite vs. Infinite Impulse Response
Infinite Impulse Response (IIR) 
An IIR filter has an IR that continues indefinitely. Many digital filters (any with feedback) are IIR.


Pros: Less computationally expensive


Cons: Less stability, nonlinear phase response


Example:

y(n) = 1/2(x(n) + y(n-1)) h(n) (as vector) = [0.5 0.25 0.125 0.0625 ….]

The biquadratic filter is also another IIR filter



z-Transform
We define Z such that powers of Z correspond to the number of delays or advances in a difference 
equation.


One sample of delay = Z. Two samples of delay = Z2.


One sample of advance = Z-1. Two samples of advance = Z-2.


Ex.:


If we’re given a sequence x(t) = [1 2 3 4], its z-Transform, X(Z) = 1 + 2Z + 3Z2 + 4Z3


Ex.:


If we’re given a sequence x(t) = [1 3 0 -1 -5], its z-Transform, X(Z) = 1 + 3Z - Z3 - 5Z4




The Convolution Theorem
The convolution of f and g is written f*g. 


An intuitive way to compute convolution by 
hand on 1-dimensional vectors is to think of it 
as a sliding window of multiplication and 
summation by a flipped ‘kernel’. For example:


x1 = (1, 5)


x2 = (1, 2, 3)


x1 * x2 = (1, 7, 13, 15)

Convolution by hand (metaphor of sliding window):

5 1

  1 2 3

= 1 x 1 = 1

 

5 1

1 2 3

= 5 x 1 + 1 x 2 = 7

  5 1

1 2 3

= 5 x 2 + 1 x 3 = 13

    5 1

1 2 3

= 5 x 3 = 15



The Convolution Theorem
x1 = (1, 5)


x2 = (1, 2, 3)


z-Transforms of these:


x1(Z) = 1 + 5Z


x2(Z) = 1 + 2Z + 3Z2


Multiplying their z-Transforms together:


x1(Z)x2(Z) = 1 + 7Z + 13Z2 + 15Z3


… which is the z-Transform of the convolution of x1 and X2!!



The Convolution Theorem
The Convolution Theorem: convolution in the time 
domain is equivalent to multiplication in the Z domain.


How does this help us? 


Well, remember impulse responses of LTI systems?


A very important application of the convolution theorem: any signal x(n) that is input to an LTI 
system, the system’s output y(x) is equal to the discrete convolution of the input signal x(n) and the 
system’s impulse response (IR) h(n).


So, if x1 = input signal and x2 = a systems’s impulse response, we can figure out its output!



For HW: Mini-Assignment II
Calculating impulse responses


z-Domain transforms


Practicing convolution of matrices


Some Octave commands + getting more knowledge of Complex 
Sinusoids


