
TECH 350: DSP
Class IV: Properties of Systems, Signal Flow Diagrams, Filters

Properties of DSP Systems We’ll Start With

Deterministic
easily predictable under reasonably simple circumstances

Linear
the sum of their effects is the effect of their sums / the output due to a
sum of input signals equals the sum of outputs due to each signal alone

Time Invariant
same output, regardless of when input occurs

LTI Systems = Linear, Time Invariant Systems

Other Important Properties
Causal

output is a function of past and current inputs (not future inputs)

(only matters for real-time applications; offline (e.g. look-ahead), not a problem)

Invertible
can determine input if given output (e.g. deconvolution)

Stable
impulse response is non-infinite (will get to this soon);

FIR = stable, IIR = maybe stable, but not guaranteed

Static
output is only a function of current input (as opposed to dynamic, which requires
memory)

Representing DSP Systems
Signal Flow (or Block) Diagrams

(Difference) Equations

Code

x(n) S y(n)

y = S(x)

audioOutput = applyS(audioInput);
#audioInput is a vector corresponding to samples in audio file

Signal Flow Diagrams
Components

x_t x_t x_t x_t-1ax_tx_t + y_t

y_t

a
+

addition/subtraction multiplication
(by a constant only!)

delay advance

D x_t x_t+1A

Signal Flow Diagrams
Components

Organizational Schemes

x_t x_t x_t x_t-1ax_tx_t + y_t

y_t

a
+

addition/subtraction multiplication
(by a constant only!)

delay advance

D x_t x_t+1A

x(n) S1 y(n) S2

series

+x(n)

S1

y(n)

S2

parallel feedback

x(n) y(n)+

S

Signal Flow Diagram <-> Equation
Organizational Schemes

Conversions to Difference Equations (a bit Pseudo-Code-y)

x(n) S1 y(n) S2

series

+x(n)

S1

y(n)

S2

parallel feedback

x(n) y(n)+

S

Signal Flow Diagram <-> Equation
Organizational Schemes

Conversions to Difference Equations (a bit Pseudo-Code-y)

y = S2(S1(x)) y = S1(x) + S2(x) y = x + S(y)

x(n) S1 y(n) S2

series

+x(n)

S1

y(n)

S2

parallel feedback

x(n) y(n)+

S

Example 1
System: y(n) = S(x(n)), where S: output = input * 0.5 + 0.5

where n = 0, 1, 2, 3, . . . are indices to input X and output Y

x(n) S y(n) x(n) y(n) +
0.5

0.5

Input: 1 0.5 0 -0.5 -1 Output: 1 0.75 0.5 0.25 0

Example 2
System: y(n) = x(n) + x(n-1), where n = 0, 1, 2, 3, . . . are indices to
input X and output Y

Input: 1 0.5 0 -0.5 -1 Output: _ 1.5 0.5 -0.5 -1.5 (-1)

x(n) y(n)+

S

x(n) y(n)+D

Example 2 = Simplest Lowpass Filter

Reminder: what a low-pass filter is (from JOS)

x(n) y(n)+

S

x(n) y(n)+D

y(n) = x(n) + x(n-1)

Code on next page…

The Simplest Lowpass Filter

Matlab Implementation 1:

N = 10; # length of text input

x = 1:N; # integer ramp

y = zeros(1,N) # our output

for n=2:N # for loop from second index to end

 y(n) = x(n) + x(n-1); # our equation

end # end for loop

The Simplest Lowpass Filter

Matlab Implementation 2:

N = 10; # length of text input

x = 1:N; # integer ramp

x_shifted = [0 x(1:N-1)]; # offset to simulate delay

y = x + x_shifted; # add x and “delayed” version of x to one another

The Simplest Lowpass Filter

Matlab Implementation 3:

N = 10;

x = 1:N;

y = filter([1,1],1,x);

these define feedback and
feedforward filter coefficients,
which we’ll get to soon!

The Simplest Lowpass Filter
Some Questions:

How far away from ideal (‘perfect’) is this filter?

 What we want to know is this filter's frequency response

How can we test this?

 First, by testing it at each frequency, what is called sine-wave analysis

Sine-Wave Analysis

From JOS

What do we learn from this?

Amplitude Response =

how much quieter or louder the output sine is

Phase Response =

how much out of phase the output sine is

Amplitude Response and Phase Response together =

Frequency Response

More Frequency Response Analysis
Sine-Wave Analysis Works…

…but isn’t particularly useful

Alternatives include:

using trigonometry and delightful simplifications like
this…

An Easier (?) Way

…or using complex sinusoids (AKA phasors), which are more
advanced (requiring an understanding of complex numbers)

Who has encountered complex numbers (a + bi) before?

Next class we’ll be discussing…
Other Filters (comb, allpass, biquad, chebyshev, butterworth),

convolution, impulse responses

Practice: Diff. Equation -> Diagram

y(n) = a x(n) + b x(n-1)

Practice: Diagram -> Diff. Equation

x(n) y(n) +
a

D

Practice: Diff. Equation -> Diagram

y(n) = a x(n) + b x(n-1) + c y(n-1)

Practice: Diagram -> Diff. Equation

a
x(n) y(n) +

A

Practice: Filtering Audio Files in Octave

fs = 44100; # define sample rate

[x, fs] = audioread(‘audio/suzanne.wav’); #read into a vector, x

sound(x,fs); # playback vector

Do something here, getting vector y

audiowrite(‘myoutput.wav’,y,fs); # output to ‘myoutput.wav’

Mini-Assignment 1:
Conversion from signal flow diagrams to equations and vice versa (2 of each)

Coding some filters in Matlab (2 filters, can do whatever you’d like)

Processing audio with filters (2 examples) (include write-up of what kind of filter you
used and what you did)

Submit to Box Folder (which I sometimes call the server)

